40 research outputs found

    A system biology approach highlights a hormonal enhancer effect on regulation of genes in a nitrate responsive "biomodule"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitrate-induced reprogramming of the transcriptome has recently been shown to be highly context dependent. Herein, a systems biology approach was developed to identify the components and role of cross-talk between nitrate and hormone signals, likely to be involved in the conditional response of NO<sub>3</sub><sup>- </sup>signaling.</p> <p>Results</p> <p>Biclustering was used to identify a set of genes that are N-responsive across a range of Nitrogen (N)-treatment backgrounds (i.e. nitrogen treatments under different growth conditions) using a meta-dataset of 76 Affymetrix ATH1 chips from 5 different laboratories. Twenty-one biclusters were found to be N-responsive across subsets of this meta-dataset. <it>N-bicluster 9 </it>(126 genes) was selected for further analysis, as it was shown to be reproducibly responsive to NO<sub>3</sub><sup>- </sup>as a signal, across a wide-variety of background conditions and datasets. <it>N-bicluster 9 </it>genes were then used as "seed" to identify putative cross-talk mechanisms between nitrate and hormone signaling. For this, the 126 nitrate-regulated genes in <it>N-bicluster 9 </it>were biclustered over a meta-dataset of 278 ATH1 chips spanning a variety of hormone treatments. This analysis divided the bicluster 9 genes into two classes: i) genes controlled by NO<sub>3</sub><sup>- </sup>only <it>vs</it>. ii) genes controlled by <it>both </it>NO<sub>3</sub><sup>- </sup>and hormones. The genes in the latter group showed a NO<sub>3</sub><sup>- </sup>response that is significantly enhanced, compared to the former. <it>In silico </it>analysis identified two Cis-Regulatory Elements candidates (CRE) (E2F, HSE) potentially involved the interplay between NO<sub>3</sub><sup>- </sup>and hormonal signals.</p> <p>Conclusion</p> <p>This systems analysis enabled us to derive a hypothesis in which hormone signals are proposed to enhance the nitrate response, providing a potential mechanistic explanation for the link between nitrate signaling and the control of plant development.</p

    In Silico Evaluation of Predicted Regulatory Interactions in Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of transcriptional regulatory mechanisms in <it>Arabidopsis </it>has become increasingly critical with the explosion of genomic data now available for both gene expression and gene sequence composition. We have shown in previous work <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>, that a combination of correlation measurements and <it>cis</it>-regulatory element (CRE) detection methods are effective in predicting targets for candidate transcription factors for specific case studies which were validated. However, to date there has been no quantitative assessment as to which correlation measures or CRE detection methods used alone or in combination are most effective in predicting TF→target relationships on a genome-wide scale.</p> <p>Results</p> <p>We tested several widely used methods, based on correlation (Pearson and Spearman Rank correlation) and <it>cis-</it>regulatory element (CRE) detection (≄1 CRE or CRE over-representation), to determine which of these methods individually or in combination is the most effective by various measures for making regulatory predictions. To predict the regulatory targets of a transcription factor (TF) of interest, we applied these methods to microarray expression data for genes that were regulated over treatment and control conditions in wild type (WT) plants. Because the chosen data sets included identical experimental conditions used on TF over-expressor or T-DNA knockout plants, we were able to test the TF→target predictions made using microarray data from WT plants, with microarray data from mutant/transgenic plants. For each method, or combination of methods, we computed sensitivity, specificity, positive and negative predictive value and the F-measure of balance between sensitivity and positive predictive value (precision). This analysis revealed that the ≄1 CRE and Spearman correlation (used alone or in combination) were the most balanced CRE detection and correlation methods, respectively with regard to their power to accurately predict regulatory-target interactions.</p> <p>Conclusion</p> <p>These findings provide an approach and guidance for researchers interested in predicting transcriptional regulatory mechanisms using microarray data that they generate (or microarray data that is publically available) combined with CRE detection in promoter sequence data.</p

    Stochastic mRNA Synthesis in Mammalian Cells

    Get PDF
    Individual cells in genetically homogeneous populations have been found to express different numbers of molecules of specific proteins. We investigated the origins of these variations in mammalian cells by counting individual molecules of mRNA produced from a reporter gene that was stably integrated into the cell's genome. We found that there are massive variations in the number of mRNA molecules present in each cell. These variations occur because mRNAs are synthesized in short but intense bursts of transcription beginning when the gene transitions from an inactive to an active state and ending when they transition back to the inactive state. We show that these transitions are intrinsically random and not due to global, extrinsic factors such as the levels of transcriptional activators. Moreover, the gene activation causes burst-like expression of all genes within a wider genomic locus. We further found that bursts are also exhibited in the synthesis of natural genes. The bursts of mRNA expression can be buffered at the protein level by slow protein degradation rates. A stochastic model of gene activation and inactivation was developed to explain the statistical properties of the bursts. The model showed that increasing the level of transcription factors increases the average size of the bursts rather than their frequency. These results demonstrate that gene expression in mammalian cells is subject to large, intrinsically random fluctuations and raise questions about how cells are able to function in the face of such noise

    A Systems Approach Uncovers Restrictions for Signal Interactions Regulating Genome-wide Responses to Nutritional Cues in Arabidopsis

    Get PDF
    As sessile organisms, plants must cope with multiple and combined variations of signals in their environment. However, very few reports have studied the genome-wide effects of systematic signal combinations on gene expression. Here, we evaluate a high level of signal integration, by modeling genome-wide expression patterns under a factorial combination of carbon (C), light (L), and nitrogen (N) as binary factors in two organs (O), roots and leaves. Signal management is different between C, N, and L and in shoots and roots. For example, L is the major factor controlling gene expression in leaves. However, in roots there is no obvious prominent signal, and signal interaction is stronger. The major signal interaction events detected genome wide in Arabidopsis roots are deciphered and summarized in a comprehensive conceptual model. Surprisingly, global analysis of gene expression in response to C, N, L, and O revealed that the number of genes controlled by a signal is proportional to the magnitude of the gene expression changes elicited by the signal. These results uncovered a strong constraining structure in plant cell signaling pathways, which prompted us to propose the existence of a “code” of signal integration
    corecore